216 research outputs found

    i rexfo life an innovative business model to reduce food waste

    Get PDF
    Abstract Every year the food produced and wasted consumes a volume of water equal to 250 km3, requires around 30% of the world agricultural land, and it is responsible for the emission of 3,3 billion tons of greenhouse gases. The direct economic consequences of food waste are ranging around 750 billion dollars per year (FAO source). i-REXFO designs an innovative business model with the objective of reducing significantly the amount of landfilled food waste. The actions are economically sustained by public incentives, tax reductions and private revenues from energy valorization of residual food waste. Uptaking the good practices from other EU countries (Denmark) the project will develop a tool to design the integrated model, optimize it from a technical, economic and environmental point of view and transfer it to other EU regions. i-REXFO will increase consumer awareness on food waste reduction in retail malls and HORECA while facilitating the sale and donation to charities and food banks of close to expiration and aesthetically not adequate food; it will also remove the barriers that hamper the use of food residues in biogas plants. The actions are economically sustained from energy valorization of food waste in biogas plant that use the digestate as fertilizer, closing the cycle. I-REXFO will achieve an overall reduction of 17000 tons/year of food waste landfilled during the project duration and in the after life phase. This will correspond to an overall reduction of 41000 tons of CO2 equivalent emissions

    Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    Get PDF
    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σ<sub>ep</sub>) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V <i>Ronald H. Brown</i> (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σ<sub>ep</sub> data were used to extract the extinction Ångström exponent (å<sub>ep</sub>), a measure of the wavelength dependence of σ<sub>ep</sub>. There was general agreement between the å<sub>ep</sub> (and to a lesser degree σ<sub>ep</sub>) measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σ<sub>ep</sub> and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (<i>R</i><sub>eff,f</sub>). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution, respectively. The results of the analysis are compared to <i>R</i><sub>eff,f</sub> values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining <i>R</i><sub>eff,f</sub> agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation = 28 nm)

    Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)

    No full text
    International audienceThe extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly apply current Antarctic PSC occurrence directly to the Arctic stratosphere. Future Arctic PSC occurrence, and thus ozone loss, will depend on the shape and barotropy of the vortex rather than on the minimum temperatures

    Using Advanced Mass Spectrometry Techniques to Fully Characterize Atmospheric Organic Carbon: Current Capabilities and Remaining Gaps

    Get PDF
    Organic compounds in the atmosphere vary widely in their molecular composition and chemical properties, so no single instrument can reasonably measure the entire range of ambient compounds. Over the past decade, a new generation of in-situ, field-deployable mass spectrometers has dramatically improved our ability to detect, identify, and quantify these organic compounds, but no systematic approach has been developed to assess the extent to which currently available tools capture the entire space of chemical identity and properties that is expected in the atmosphere. Reduced-parameter frameworks that have been developed to describe atmospheric mixtures are exploited here to characterize the range of chemical properties accessed by a suite of instruments. Multiple chemical spaces (e.g. oxidation state of carbon vs. volatility, and oxygen number vs. carbon number) were populated with ions measured by several mass spectrometers, with gas- and particle-phase -pinene oxidation products serving as the test mixture of organic compounds. Few gaps are observed in the coverage of the parameter spaces by the instruments employed in this work, though the full extent to which comprehensive measurement was achieved is difficult to assess due to uncertainty in the composition of the mixture. Overlaps between individual ions and regions in parameter space were identified, both between gas- and particle-phase measurements, and within each phase. These overlaps were conservatively found to account for little (<10%) of the measured mass. However, challenges in identifying overlaps and in accurately converting molecular formulas into chemical properties (such as volatility or reactivity) highlight a continued need to incorporate structural information into atmospheric measurements

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei

    Get PDF
    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm−3) and 33% (36 cm−3) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm−3) in late-autumn but only 4% (4 cm−3) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic

    Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    Get PDF
    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state ([bar over OS][subscript C]) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H[subscript 2]O[superscript +] and CO[superscript +] ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H[subscript 2]O[superscript +], CO[superscript +], and CO[subscript 2][superscript +] fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO[superscript +] and especially H[subscript 2]O[superscript +] produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The [bar over OS][subscript C] values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 [bar over OS][subscript C] units). This indicates that [bar over OS][subscript C] is a more robust metric of oxidation than O : C, likely since [bar over OS][subscript C] is not affected by hydration or dehydration, either in the atmosphere or during analysis.National Science Foundation (U.S.) (CHE-1012809)National Science Foundation (U.S.) (ATM-1238109

    Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Get PDF
    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 216 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.Comment: 10 pages, 5 figure

    Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    Get PDF
    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure

    Search for Two-Neutrino Double Electron Capture of 124^{124}Xe with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124^{124}Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of 124^{124}Xe using 7636 kg\cdotd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life T1/2>6.5×1020T_{1/2}>6.5\times10^{20} yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of T1/2>6.1×1022T_{1/2}>6.1\times10^{22} yr after an exposure of 2 t\cdotyr.Comment: 6 pages, 4 figure
    corecore